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§1

K: an NF or an MLF ↪→ K: an alg closure of K

GK
def
= Gal(K/K)

(g, r): a pair of nonnegative integers s.t. 2g − 2 + r > 0

C: a hyperbolic curve of type (g, r) / K

(g: the genus, r: the number of cusps)

π1((−)): the étale fundamental gp of (−)

Recall: The homotopy ext seq

1 → π1(C ×K K) → π1(C) → GK → 1

induces an outer representation

ρ : GK → Out(π1(C ×K K))

Bely̆ı, Voevodskĭı, Matsumoto

If r > 0, then ρ is injective. �

Today,

Thm 1 (Hoshi-Mochizuki)

For any (g, r), ρ is injective. �

Method: Combinatorial Anabelian Geometry
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Notations:

k: an alg closed field of char 0

X: a hyperbolic curve of type (g, r) / k

Xn
def
= {(x1, · · · , xn) ∈

n︷ ︸︸ ︷
X ×k · · · ×k X | xi �= xj if i �= j }

Πn
def
= π1(Xn)

In particular, the projections

Xn → Xn−1 → · · · → X2 → X

(x1, · · · , xn) �→ (x1, · · · , xn−1) �→ · · · �→ (x1, x2) �→ x1

induce a standard sequence of [outer] surjections

Πn � Πn−1 � · · · � Π2 � Π1

Write Km
def
= Ker(Πn � Πm), Π0

def
= {1}.

� {1} = Kn ⊆ Kn−1 ⊆ · · · ⊆ K1 ⊆ K0 = Πn

α ∈ Aut(Πn) is F-admissible
def⇔ For any fiber subgroup

J ⊆ Πn, it holds that α(J) = J .

Recall:

J ⊆ Πn is a fiber subgroup
def⇔ J = Ker(Πn � Πn′)

— where Πn � Πn′ is induced by a proj Xn → Xn′ .
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α ∈ Aut(Πn) is C-admissible
def⇔

(i) α(Km) = Km (0 ≤ m ≤ n)

(ii) α : Km/Km+1
∼→ Km/Km+1 induces a bijection be-

tween the set of cusp’l inertia subgps ⊆ Km/Km+1

α ∈ Aut(Πn) is FC-admissible
def⇔ α is F-admissible and

C-admissible

AutFC(Πn)
def
= { FC-admissible automorphisms of Πn }

OutFC(Πn)
def
= AutFC(Πn)/Inn(Πn)

Observe: Xn+1 → Xn “forgetting the last factor” induces

φn : OutFC(Πn+1) → OutFC(Πn)

Thm 2 φn is injective for n ≥ 1. �

Remark:

(i) φn is bijective for n ≥ 4.

(ii) Various Xn+1 → Xn “forgetting a factor” induce

the same OutFC(Πn+1) → OutFC(Πn).
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Thm 2 ⇒ Thm 1

Let X
def
= C ×K K, k

def
= K

( � π1(C ×K K) = π1(X) = Π1 )

Note: The outer rep’n ρ : GK → Out(Π1) factors as

GK → OutFC(Π1) ↪→ Out(Π1).

Thus, to show that ρ is injective, it suffices to show that

GK → OutFC(Π1) is injective.

This follows from the commutativity of the diagram

GK OutFC(Π1)

GK OutFC(Π2)

GK OutFC(Π3) Out(π1(P
1
K
\ {0, 1,∞}))

φ1

injective by Bely̆ı

φ2

∃
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Today, for simplicity, we consider the proof of the

injectivity of φ1 : OutFC(Π2) → OutFC(Π1).

⇒ It suffices to verify:

Prop 3

Let

AutIFC(Π2)
def
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
α ∈ AutFC(Π2)

∣∣∣∣∣∣∣∣∣∣

Π1

Π2

Π1

α1=id

α

p1

p2
α2=id

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

Ξ
def
= Ker(p1) ∩ Ker(p2) [ ⊆ Π2 ].

Then the injection

Ξ
conj.
↪→ AutIFC(Π2) [cf. the slimness of Π2]

is bijective. �

Indeed, let σ ∈ AutFC(Π2) s.t.

Π1

Π2

Π1

σ1 = Inn(g1)

σ

p1

p2
σ2
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Observe: Let D ⊆ Π2 be a decomp. gp assoc. to

the diagonal ⊆ X ×k X. Then it holds that

σ(D) = π · D · π−1 (π ∈ Π2).

Thus, since

D Π2

{(a, a)} Π1 ×Π1

(p1,p2)

we conclude that

σ2 = Inn(g2) (g2 ∈ Π1).

Let g ∈ Π2 s.t. p1(g) = g1 and p2(g) = g2.

� Inn(g)−1 ◦ σ ∈ AutIFC(Π2)
∼← Ξ

� σ ∈ Inn(Π2)

In the following, we consider the proof of Prop 3.
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§2

A pointed stable curve / k

v1 v2

e

e1
e2

�

A semi-graph of anabelioids of PSC-type

B(π1(v1)) B(π1(v2))

B(π1(e))B(π1(e1)) B(π1(e2))

— where

∗ irreducible component ↔ vertex

∗ node ↔ closed edge

∗ cusp ↔ open edge

∗ B(G) : the connected anabelioid assoc. to G
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G: a semi-graph of anabelioids of PSC-type

� A natural notion of finite étale coverings of G
� One can define the [profinite] fundamental gp ΠG

Example: (A finite étale covering of degree 4)

←−
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Notation:

G: a semi-graph of anabelioids of PSC-type

G: the underlying semi-graph of G
V(G): the set of vertices of G

N (G): the set of nodes of G

C(G): the set of cusps of G

E(G) def
= N (G) ∪ C(G)

In particular, z ∈ V(G) (resp. N (G); C(G); E(G)) deter-
mines a(n) verticial (resp. nodal; cuspidal; edge-like)

subgroup Πz ⊆ ΠG [up to ΠG-conjugacy].

G: a profinite group ⊇ H: a closed subgroup

ZG(H)
def
= {g ∈ G | g · h = h · g for ∀h ∈ H }

∩
NG(H)

def
= {g ∈ G | g ·H · g−1 = H }

∩

CG(H)
def
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
g ∈ G

∣∣∣∣∣∣∣∣∣∣

g ·H · g−1

g ·H · g−1 ∩H

H

open

open

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
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Prop 4

(i) If z ∈ V(G) (resp. E(G)), then Πz is slim (resp.

∼= Ẑ).

(ii) Let {z1, z2} be a subset of either V(G) or E(G).
If Πz1 ∩Πz2

open

⊆ Πz2 , then z1 = z2.

(iii) If z ∈ V(G) ∪ E(G), then CΠG (Πz) = Πz.

(iv) Let z ∈ E(G). Then Πz ⊆ ΠG is cuspidal (resp.

nodal) ⇔ Πz is contained in precisely one

(resp. two) verticial subgroup(s). �

Definition

G, H: semi-graphs of anabelioids of PSC-type

α : ΠG
∼→ ΠH: an isomorphism of profinite groups

(i) α is graphic ⇔ α arises from an isom G ∼→ H
(ii) α is group-theoretically verticial (resp. nodal;

cuspidal; edge-like) ⇔ α maps each verticial

(resp. nodal; cusp’l; edge-like) subgp ⊆ ΠG onto

a verticial (resp. nodal; cusp’l; edge-like) subgp

⊆ ΠH, and, every verticial (resp. nodal; cusp’l;

edge-like) subgp ⊆ ΠH arises in this fashion.
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Prop 5

α : ΠG
∼→ ΠH: an isomorphism of profinite groups

Then α is graphic ⇔ α is group-theoretically

verticial and group-theoretically edge-like.

Moreover, in this case, α arises a unique isom

G ∼→ H. �

(Proof) Prop 5 follows from Prop 4, (ii), (iii).

Observe: ΠG is topologically finitely generated

� A profinite topology on Out(ΠG)

Since the natural hom. Aut(G) → Out(ΠG) is an

injection with closed image [cf. Prop 5],

� A profinite topology on Aut(G)

Definition

I: a profinite group

We refer to a continuous hom.

I → Aut(G) [↪→ Out(ΠG)]

as an outer representation of PSC-type.
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Thm 6 (A comb. ver. of the Grothendieck Conj.)

G, H: semi-graphs of anabelioids of PSC-type

ρI : I → Aut(G), ρJ : J → Aut(H):

outer representations of PSC-type

α : ΠG
∼→ ΠH: an isomorphism of profinite groups

which fits into a commutative diagram

I Aut(G) Out(ΠG)

J Aut(H) Out(ΠH)

∼

ρI

∼ Out(α)

ρJ

— where I
∼→ J is an isomorphism. Suppose that

(i) ρI , ρJ are of NN-type [cf. §4].
(ii) C(G) �= ∅ and α is group-theoretically cusp’l.

Then α is graphic [cf. Prop 5]. �
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§3

(Proof of Prop 3)

Remark: At last year’s seminar, we have already discussed

the affine case of Prop 3!

For simplicity, let

X =

To verify Prop 3, we may replace X → Spec(k) by a

stable log curve

v1
v2

e

Z log =

over a log point Slog. [cf. the deformation theory of

stable log curves; the specialization isomorphism

Πn = π1(Xn)
∼→ Ker(πlog

1 (Z log
n ) � πlog

1 (Slog))]
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Z log � a semi-graph of anabelioids of PSC-type G

Observe: The fiber (Z log
2 )e of pr1 : Z log

2 → Z log at e is

v◦1 v◦2v◦0

e◦1 e◦2

e◦0

� a semi-graph of anabelioids of PSC-type G/e

In particular, we have

1 Π2/1 Π2 Π1 1

ΠG/e
ΠG

p1

∼ ∼

— where Π2/1
def
= Ker(Π2 � Π1); the horizontal seq.

is exact.

� an outer rep’n ρ : Π1 → Out(Π2/1)
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Y ⊆ Z: the irreducible component corr. to v1

Y log: the smooth log curve over Slog determined by

the hyperbolic curve Y \ {e}

Πsub
n

def
= Ker(π1(Y

log
n ) � π1(S

log))

Πsub
2/1

def
= Ker(Πsub

2 � Πsub
1 )

Note: The natural closed imm. Y ↪→ Z induces a

commutative diagram

Y2 Z2

Y Z

pr1 pr1

This diagram induces a commutative diagram

1 Πsub
2/1 Πsub

2 Πsub
1 1

1 Π2/1 Π2 Π1 1
p1

— where the horizontal seq. is exact; the vertical

arrows are injective.

� an outer rep’n ρsub : Πsub
1 → Out(Πsub

2/1)
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Πsub
2/1 ↪→ Π2/1

↪→

(Y log
2 )e

v◦1 v◦2v◦0

e◦1 e◦2

e◦0

(Z log
2 )e

Πsub
1 ↪→ Π1

↪→

Y log

v1 v2

e

Z log
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Let α ∈ AutIFC(Π2).

Πe ⊆ Π1: an edge-like subgp assoc. to e

� We have a comm. diag.

Πe Π1 Out(Π2/1)

Πe Π1 Out(Π2/1)

ρ

∼ Out(α|Π2/1
)

ρ

Note: Since the composite Πe ↪→ Π1 → Out(Π2/1)

factors as the composite of

Πe → Aut(G/e) with Aut(G/e) ↪→ Out(Π2/1)

— where the resulting outer rep’n is of NN-type —

it follows from Thm 6 that α|Π2/1
is graphic.

Moreover, since

Π2 Π1α
p2

α2=id

α|Π2/1
induces identity automorphism on “G/e ”

[cf. Prop 4, (i), (ii)].
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Fix an edge-like subgroup Πe◦1 ⊆ Π2/1 assoc. to e◦1.

Claim: ∃γ ∈ Ξ s.t.

α(Πe◦1 ) = γ ·Πe◦1 · γ−1.

(Proof of Claim)

By the above Note, there exists γ′ ∈ Π2/1 s.t.

α(Πe◦1 ) = γ′ ·Πe◦1 · γ′−1.

Thus, we have

p2(Πe◦1 ) = p2(γ
′) · p2(Πe◦1 ) · p2(γ

′)−1.

By Prop4, (iii), we conclude that

p2(γ
′) ∈ p2(Πe◦1 ).

In particular, by multiplying γ′ by a suitable ∈ Πe◦1 ,

we obtain an element γ ∈ Ξ, as desired.

In light of Claim, to verify that α ∈ Ξ, we may

assume that
(1) α(Πe◦1 ) = Πe◦1 .
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Πv◦
1
, Πv◦

0
⊆ Π2/1: the unique verticial subgps assoc. to

v◦1 , v
◦
0 that contain Πe◦1 [cf. Prop 4, (iv)]

Πsub
2/1 ⊆ Π2/1: the unique Π2/1-conj. of the image of

“Πsub
2/1 ↪→ Π2/1” that contains and is topologically

generated by Πv◦
1
, Πv◦

0

� By (1) and the graphicity of α|Π2/1
, we conclude:

(2) α(Πv◦
1
) = (Πv◦

1
);

(3) α(Πv◦
0
) = (Πv◦

0
);

(4) α(Πsub
2/1) = (Πsub

2/1).

Observe: Since CΠ2/1
(Πsub

2/1) = Πsub
2/1 [cf. Prop 4, (iii)],

the diagram

Πsub
1 Out(Πsub

2/1)

Πsub
1 Out(Πsub

2/1)

ρsub

∼ Out(α|
Πsub
2/1

)

ρsub

[cf. (4)] commutes. Thus, α|Πsub
2/1

arises from an

αsub ∈ Aut(Πsub
2 ) [cf. the slimness of Πsub

2/1].
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Moreover, it follows from the construction that

αsub ∈ AutIFC(Πsub
2 ).

On the other hand, by the affine case of Prop 3 [cf.

Remark at the beginning of the proof], we have

AutIFC(Πsub
2 )

∼← Ξsub def
= Ξ ∩Πsub

2 .

� α|Πsub
2/1

is a Ξ-inner automorphism!

Thus, to verify that α ∈ Ξ, we may assume that

(5) α|Πsub
2/1

= id.

� (6) α|Πv◦
0

= id [cf. (3)]

Πe◦2 ⊆ Π2/1: an edge-like subgp assoc. to e◦2 which

is contained in Πv◦
0

Πv◦
2
⊆ Π2/1: the unique verticial subgp assoc. to v2

that contains Πe◦2 [cf. Prop 4, (iv)]

� (7) α(Πe◦2 ) = Πe◦2

By (7) and the graphicity of α|Π2/1
, we conclude:

(8) α(Πv◦
2
) = Πv◦

2
.

20



By (8), we obtain a comm. diag.

Πv◦
2

Πv◦
2

p2(Πv◦
2
) p2(Πv◦

2
)

∼
α|Πv◦

2

∼ ∼

Hence, we have

(9) α|Πv◦
2

= id.

Since Π2/1 is topologically generated by Πsub
2/1 and

Πv◦
2
, it follows from (5), (9) that

(10) α|Π2/1
= id.

Finally, it follows from (10) and the assumption

Π2 Π1α
p1

α1=id

that α = id [cf. the slimness of Π2/1].
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§4

Fix a universal covering G̃ → G.

V(G̃) def
= lim←−V(G′)

N (G̃) def
= lim←−N (G′)

C(G̃) def
= lim←−C(G′)

E(G̃) def
= N (G̃) ∪ C(G̃)

— where the proj. limits are over all conn. fin. étale

subcoverings G′ → G of G̃ → G

Let � ∈ {V , E}.

If z̃ ∈ �(G̃), then we write z̃(G′) for the image of

z̃ via the natural map �(G̃) → �(G′).

Πz̃ ⊆ ΠG : a unique �-like subgroup assoc. to z̃(G)
s.t. for every conn. fin. étale subcovering G′ → G
of G̃ → G, the subgroup Πz̃ ∩ΠG′ ⊆ ΠG′ is a

�-like subgroup assoc. to z̃(G′)
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ρI : I → Aut(G): an outer rep’n of PSC-type

ΠI
def
= ΠG

out
� I: the profinite group obtained by pulling

back the exact sequence

1 ΠG Aut(ΠG) Out(ΠG) 1
conj.

by the composite I
ρI→ Aut(G) ↪→ Out(ΠG).

� we have a comm. diag.

1 ΠG ΠI I 1

1 ΠG Aut(ΠG) Out(ΠG) 1

ρI

— where the horizontal seq. are exact.

Definition

(i) If z̃ ∈ V(G̃) or N (G̃), then we shall write

Iz̃
def
= ZΠI

(Πz̃) ⊆ Dz̃
def
= NΠI

(Πz̃).

(ii) If z̃ ∈ C(G̃), then we shall write

Iz̃
def
= Πz̃ ⊆ Dz̃

def
= NΠI

(Πz̃).
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Lem 7

(i) Let ṽ ∈ V(G̃). Then the composite Iṽ ↪→ ΠI � I

is injective.

(ii) Let ẽ ∈ N (G̃) that abuts to ṽ ∈ V(G̃). Then it

holds that Iṽ ⊆ Iẽ. �

(Proof) (i) follows from Prop 4, (i), (iii). (ii) is easy.

Definition

ρI : I → Aut(G): an outer rep’n of PSC-type

ρI is of NN-type (resp. SNN-type) ⇔

(1) I ∼= Ẑ.

(2) For every ṽ ∈ V(G̃), the image of the composite

Iṽ ↪→ ΠI � I is open (resp. I) [cf. Lem 7, (i)].

(3) For every ẽ ∈ N (G̃), the natural inclusions

Iṽ1 , Iṽ2 ⊆ Iẽ — where ẽ abuts to ṽ1, ṽ2 ∈ V(G̃)
[cf. Lem 7, (ii)] — induces an open injection

Iṽ1 × Iṽ2 ↪→ Iẽ.
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Lem 8 ρI : I → Aut(G): of SNN-type

(i) Let ṽ ∈ V(G̃). Then Dṽ = Πṽ × Iṽ.

(ii) Let ṽ ∈ V(G̃); ẽ ∈ E(G̃) an element that abuts

to ṽ. Then Dẽ = Πẽ × Iṽ.

(iii) Πṽ = ZΠI
(Iṽ) ∩ΠG = NΠI

(Iṽ) ∩ΠG . �

Notation:

(i) Let v, w ∈ V(G). We shall write δ(v, w) ≤ n if

the following conditions are satisfied:

∗ If n = 0, then v = w.

∗ If n ≥ 1, then there exist

{e1, . . . , en} ⊆ N (G); {v0, . . . , vn} ⊆ V(G)

— where v0 = v; vn = w; ei abuts to vi−1, vi.

We shall write δ(v, w) = n if δ(v, w) ≤ n and

δ(v, w) �≤ n− 1.

(ii) Let ṽ, w̃ ∈ V(G̃). We shall write

δ(ṽ, w̃)
def
= supG′{δ(ṽ(G′), w̃(G′))}.
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Lem 9

ρI : I → Aut(G): an outer rep’n of PSC-type

Let ṽ1, ṽ2 ∈ V(G̃).
Consider the following 8 conditions:

(1) δ(ṽ1, ṽ2) = 0.

(2) δ(ṽ1, ṽ2) = 1.

(3) δ(ṽ1, ṽ2) = 2.

(4) δ(ṽ1, ṽ2) ≥ 3.

(1′) Dṽ1 = Dṽ2 .

(2′) Dṽ1 �= Dṽ2
; Dṽ1

∩Dṽ2 ∩ΠG �= {1}.
(3′) Dṽ1 ∩Dṽ2 �= {1}; Dṽ1

∩Dṽ2 ∩ΠG = {1}.
(4′) Dṽ1 ∩Dṽ2 = {1}.

Then we have equivalences

(1) ⇔ (1′); (2) ⇔ (2′); (3) ⇔ (3′); (4) ⇔ (4′).

Moreover, suppose that ρI is of SNN-type.

Then if (3′) is satisfied, then there exists a unique

ṽ3 ∈ V(G̃) s.t.

δ(ṽ1, ṽ3) = δ(ṽ2, ṽ3) = 1 and Dṽ1 ∩Dṽ2 = Iṽ3 . �
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(Proof of Thm 6)

To verify Thm 6, by replacing ΠI by an open subgroup

⊆ ΠI , we may assume that G, H are sturdy, and that

ρI , ρJ are of SNN-type [cf. Prop 4, (iii)].

∗ sturdy · · · Every irr. component of the pointed stable

curve that gives rise to G satisfies the following:

The genus of the normalization is ≥ 2.

Thus, to verify Thm 6, it suffices to verify

Claim A:

G, H: the compactifications of G, H, respectively

Then the isom. α : ΠG
∼→ ΠH which is induced

by α is graphic. �

[We apply Claim A to various conn. fin. ét. coverings!]

=⇒

G G
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Lem 10

Gp-theoretically verticial ⇒ Gp-theoretically nodal. �

It follows from Prop 5, Lem 10 that Claim A ⇔

Claim B:

α : ΠG
∼→ ΠH is gp-theoretically verticial. �

(Proof of Claim B) First, let us prove that:

There exists a verticial subgroup ∇ ⊆ ΠG s.t.

α(∇) is a verticial subgroup ⊆ ΠH.

Write I → Out(ΠG) (resp. J → Out(ΠH)) for the outer

rep’n of PSC-type determined by ρI (resp. ρJ) and

ΠI
def
= ΠG

out
� I, ΠJ

def
= ΠH

out
� J

� α : ΠG
∼→ ΠH [and α] induces a comm. diag.

(
)

ΠI = ΠG
out
� I ΠH

out
� J = ΠJ

ΠI = ΠG
out
� I ΠH

out
� J = ΠJ

∼
β

∼
β

— where the vertical arrows are the surj. induced by

ΠG � ΠG , ΠH � ΠH.
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By assumption (ii), ∃eG ∈ C(G), ∃eH ∈ C(H) s.t.

β(DeG ) = DeH .

Write vG ∈ V(G) (resp. vH ∈ V(H)) for the vertex

to which eG (resp. eH) abuts.

By Lem 8, (ii), the diag. (
) induces a diag.

DeG DeH

IvG IvH

∼
β

∼
β

� β(IvG ) = IvH !

Thus, we conclude from Lem 8, (iii), that

α(ΠvG ) = β(NΠI
(IvG ) ∩ ΠG)

= NΠI
(β(IvG )) ∩ ΠH

= NΠI
(IvH) ∩ ΠH

= ΠvH . � ∇ def
= ΠvG

Therefore, to verify Claim B, it suffices to show that:

Let ṽ1, ṽ2 ∈ V(G̃) s.t. δ(ṽ1(G), ṽ2(G)) ≤ 1. Then if

α(Πṽ1
) is verticial, then α(Πṽ2) is verticial.
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If ṽ1(G) = ṽ2(G), then it is immediate. Suppose

that ṽ1(G) �= ṽ2(G) and that α(Πṽ1) is verticial.

Observe: There exist w̃1, ũ1, w̃2 ∈ V(G̃) s.t.

(a) ṽ1(G) = w̃1(G) = ũ1(G); ṽ2(G) = w̃2(G).
(b) δ(w̃1, ũ1) = 2.

(c) δ(w̃2, w̃1) = δ(w̃2, ũ1) = 1. [cf. the next page]

(a) � There exist w̃′
1, ũ

′
1 ∈ V(H̃) s.t.

β(Dw̃1
) = Dw̃′

1
, β(Dũ1

) = Dũ′
1
.

(b), (c), Lem 9 � Dw̃1
∩Dũ1

= Iw̃2

� Dw̃′
1
∩Dũ′

1
�= {1}, Dw̃′

1
∩Dũ′

1
∩ΠH = {1}

� ∃w̃′
2 ∈ V(H̃) s.t. Dw̃′

1
∩Dũ′

1
= Iw̃′

2
[cf. Lem 9]

� β(Iw̃2) = Iw̃′
2

Thus, it follows from Lem 8, (iii), that

α(Πw̃2) = Πw̃′
2
.

� We conclude from (a) that α(Πṽ2) is verticial !
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� �
G′ → G: a connected finite étale covering of degree = 2

� �

w̃2(G ′
)

w̃1(G ′
)

ũ1(G ′
)

←−

ṽ2(G) ṽ1(G)
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